Convexity properties and inequalities concerning the (p; k)-gamma function
نویسندگان
چکیده
منابع مشابه
Monotonicity and Convexity for the Gamma Function
Let a and b be given real numbers with 0 ≤ a < b < a + 1. Then the function θa,b(x) = [Γ(x + b)/Γ(x + a)]1/(b−a) − x is strictly convex and decreasing on (−a,∞) with θa,b(∞) = a+b−1 2 and θa,b(−a) = a, where Γ denotes the Euler’s gamma function.
متن کاملSome inequalities concerning Smarandache's function
The objectives of this article are to study the sum IS(d) and to find some upper din bounds for Smarandache's function. This sum is proved to satisfy the inequality IS(d) ~ n at most all the composite numbers, Using this inequality, some new din upper bounds for Smarandache's function are found. These bounds improve the well-known inequality Sen) ~ n.
متن کاملInequalities concerning the function π ( x ) : Applications
The proof of the above inequalities is not elementary and is based on the first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4]. Then Rosser, Yohe and Schoenfeld announced that the first 3 500 000 zeros of ξ(s) lie on the critical line [9]. This result was followed by two papers [7], [10]; some of the inequalities they include will be used in order to obtain inequalities ...
متن کاملInequalities for the Gamma Function
We prove the following two theorems: (i) Let Mr(a, b) be the rth power mean of a and b. The inequality Mr(Γ(x), Γ(1/x)) ≥ 1 holds for all x ∈ (0,∞) if and only if r ≥ 1/C − π2/(6C2), where C denotes Euler’s constant. This refines results established by W. Gautschi (1974) and the author (1997). (ii) The inequalities xα(x−1)−C < Γ(x) < xβ(x−1)−C (∗) are valid for all x ∈ (0, 1) if and only if α ≤...
متن کاملTurán Type inequalities for (p, q)-Gamma function
have many applications in pure mathematics as in other branches of science. They are named by Karlin and Szegő in [8], Turán-type inequalities because the first of these type of inequalities was introduced by Turán in [18]. More precisely, he used some results of Szegő in [17] to prove the previous inequality for x ∈ (−1, 1), where fn is the Legendre polynomial of degree n. This classical resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2017
ISSN: 1303-5991
DOI: 10.1501/commua1_0000000807